CME 323: Distributed Algorithms and Optimization, Spring 2015
http://stanford.edu/~rezab/dao.
Instructor: Reza Zadeh, Databricks and Stanford.

Lecture 8, 4/22/2015. Scribed by Orren Karniol-Tambour, Hao Yi Ong, Swa-
roop Ramaswamy, and William Song.

8.1 Introduction

This lecture covers the basics of GraphX, Spark’s graph-processing API, which extends the popular
Pregel data flow paradigm to Spark. It also features an introduction to matrix computations using
Spark.

8.2 How does Pregel work?

Pregel (a portmanteu of the words Parallel, Graph, and Google) is a data flow paradigm and system
for large-scale graph processing created at Google to solve problems that are hard or expensive to
solve using only the MapReduce framework. While the system remains proprietary at Google, the
computational paradigm was adopted by many graph-processing systems, and many popular graph
algorithms have been converted to the Pregel framework.

Pregel is essentially a message-passing interface constrained to the edges of a graph. The idea
is to 7think like a vertex” - algorithms within the Pregel framework are algorithms in which the
computation of state for a given node depends only on the states of its neighbours. Figure 1 shows
the Pregel paradigm’s data flow model. A Pregel computation takes a graph and a corresponding
set of vertex states as its inputs. At each iteration, referred to as a superstep, each vertex can send
a message to its neighbors, process messages it received in a previous superstep, and update its
state. Thus, each superstep consists of a round of messages being passed between neighbors and an
update of the global vertex state. A few examples of Pregel implementations of graph algorithms
will help clarify how the paradigm works.

/ Input graph ‘ ‘ Vertexstateli‘ ‘ Messages 1 ‘

| l |
}

{ Vertex state 2 ‘ ‘ Messages 2 ‘

\’\\\-; l ‘/‘
R

Figure 1: The Pregel paradigm’s data flow model.

http://stanford.edu/~rezab/dao
lukesprangers
Highlight

lukesprangers
Highlight
Not all messages need to come in at same time, so algos need to be designed to take in messages and aggregate themselves

Most will probably include sets of seen messages, structs of node maxes, etc

8.3 Examples of Graph Algorithm Implementations using Pregel
8.3.1 PageRank

PageRank is very intuitively implemented in the Pregel paradigm. At each superstep, each vertex
updates its state with a weighted sum of PageRanks from all of its neighbors, processing the set of
previous incoming messages. It then sends out an equal share of its new PageRank to each of its
neighbors, sending out a set of outgoing messages. This continues until convergence.

Algorithm 1 PageRank
input: G : Graph[V, E])
while err > € do

for vertex ¢ do

R[] =015+085 > M]Jj]
JENin ()

M{i] = RI[i]/|Nous|
Send M i] to all Noy (i)

end for

err = |R — previousR)|
end while

8.3.2 Connected Components

To compute connected components in a graph using the Pregel paradigm, we can imagine letting
each vertex ‘infect’ its neighbors. Each vertex is initialized with a unique ID, and at each iteration,
each vertex sends its ID to its neighbors. Each vertex then overwrites its own ID with the max
(or alternatively, min) ID it receives from its neighbors at each superstep. This continues until
convergence. For computing the weakly connected components of an undirected graph, we assume
Nin = Nout-

One caveat regarding the algorithm given above is that it may take O(n) iterations to converge
for some types of graphs. For example, consider the lollipop graph shown in Figure 2. If you start
at one of the end nodes on the right, then at each iteration, you will only infect one node. For
graphs which have n in the order of millions or billions, this may be unacceptable. However, in
most social networks and web graphs, this does not really happen, so this is not a problem for most
practical applications.

Figure 2: An example of a lollipop graph.

lukesprangers
Highlight

lukesprangers
Highlight

Algorithm 2 Strongly Connected Components
input: G : Graph[V, E])

stale =0
while stale # |V| do
stale =0

for vertex 7 do
if ID[i] = max ID[j] then

jENm(i)
stale = stale + 1
else
ID|il = max ID|j
[] jeNout(i) []]
Send ID[i] to all Ny,
end if
end for
end while

In many real-world graphs, few nodes have very high degree neighborhoods - for example, a
node representing the followers of Katy Perry on Twitter will have tens of millions of neighbors.
Critically, the Pregel framework does not require that we able to fit the incoming messages from
the neighborhood of a vertex in a single machine. The Pregel paradigm allows us to distribute the
computation for high degree nodes, as we’ll see in GraphX’s notion of ‘vertex cutting’.

8.4 GraphX

GraphX is Spark’s graph processing and computation API, which implements the Pregel paradigm
within Spark using RDDs. To implement Pregel, separate RDDs are created to represent the graph,
the global vertex state, and the messages from each vertex to its neighbors. Note that because RDDs
are immutable objects in Spark, new RDDs representing the vertex state and outgoing messages
are created at each superstep of the computation. A groupByKey operation is used to perform each
superstep in the computation. We could use a FlatMap and a reduceByKey but this can be very
expensive when only 1-2 vertices send messages in a superstep. Since Pregel algorithms perform
supersteps until convergence, later supersteps typically involve updates on only a few vertices. If
we used a FlatMap and a reduceByKey, we would have to shuffle the whole data just to update
a few vertices. This is very inefficient when we consider algorithms where very few vertices send
messages at each superstep, so we use groupByKey instead.

In GraphX, every vertex has an ID and a property associated with it, which can take the form of
any tuple. Similarly, each edge is associated with an ID for the source vertex, ID of the destination
vertex and a property.

lukesprangers
Highlight

lukesprangers
Highlight
Wonder how shuffle between compute nodes (underlying VM's) works for all of this, if VM1 and VM3 receive messages for node 1, how does that superstep update things

lukesprangers
Highlight
Seems vertex cutting implementation is how all of the distributed vertex information is handled

lukesprangers
Highlight

lukesprangers
Highlight
Vertex state and outgoing messages are created at each superstep, and then when ingesting messages each RDD is handled with groupByKey in aggregateMessage function that's implemented in every algo signature

lukesprangers
Highlight
reduceByKey shuffles when groupByKey doesn't??? Wjat?

lukesprangers
Highlight

lukesprangers
Highlight
Triplet!

8.4.1 Map-Reduce Triplets

A triplet contains a source vertex, a destination vertex and the edge connecting these two. As it
turns out, computing triplets, or joining edges and vertices, is a basic computation used in many
useful graph algorithms. However, if done naively, computing triplets would require two joins on
the vertex RDD and the edge RDD, which is very expensive. GraphX implements an optimized
triplets computation and provides us with a triplets operator for joining vertices and edges in its
API. The Triplets operator is composed of two inputs, a map and a reduce function. The Map
function takes as its input a triplet and returns an object. The Reduce function performs a reduce
operation on these objects.

8.4.2 Triplets Example : Oldest Follower

In the oldest follower problem, we try to to find the oldest follower for each node in a directed
graph. We can compute this using MapReduce triplets as follows to accomplish this

val oldestFollowerAge = graph.mrTriplets(
e=> (e.dst.id, e.src.age),// Map
(a,b)=> max(a, b) // Reduce

) .vertices

8.4.3 Other Operations

Other operations natively available in the GraphX API include PageRank, strongly connected
ponents, triangle counting etc. GraphX also provides a Mask operator, which given a graph,
rns a sub-graph with specified vertices masked. For a complete list of GraphX operations, refer

to the |GraphX programming guidel

8.4.4 Optimization

Graphs derived from natural phenomena (e.g., social networks) tend to follow skewed power-law
distributions. In general, partitioning algorithms based on edge cutting typically fare poorly on such
graphs due to high-degree vertices present in such graphs. In comparison, vertex cut partitioning
schemes have been observed to perform well on many large natural graphs [4]. Thus, to distribute
computation workload evenly GraphX partitions the graph with vertex-cut. This is different from,
say, Giraph, which uses edge-cut partitioning.

In brief, vertex-cut splits high-degree vertices across partitions and evenly assigns edges to a
machine in a way that minimizes the number of times each vertex is cut. As explained in lecture,
GraphX represents a graph using three RDDs: an edge collection and two vertex collections. Being
separate constructs, these RDDs do not need to be stored on the same machine. Each vertex
partition contains a routing table RDD and a datatable RDD. The routing table is a logical map
from a vertex id to the set of edge partitions that contains adjacent edges. The datatable RDD
simply stores vertex data in the form of vertex (id, data) pairs. The edge RDD stores the adjacency
structure and edge data. Each edge is represented as a tuple consisting of the source vertex id,

http://spark.apache.org/docs/latest/graphx-programming-guide.html
lukesprangers
Highlight

lukesprangers
Highlight

lukesprangers
Highlight
GraphX does so much shit that DS masking team just does themselves

lukesprangers
Sticky Note
Wonder if TF GNN utilizes this

lukesprangers
Highlight

lukesprangers
Highlight

lukesprangers
Highlight

lukesprangers
Highlight
This will actually split up the edges that a VM has to handle for a vertex, but each VM itself would need to communicate with each other as well via spark actors

lukesprangers
Highlight

lukesprangers
Highlight

lukesprangers
Highlight

destination vertex id, and user-defined data as well as a virtual partition identifier (pid). Note that
the edge table contains only the vertex ids and not the vertex data. The edge table is partitioned by
the pid. This technique incurs some overhead due to the joins and aggregation needed to coordinate
vertex properties across partitions containing adjacent edges.

‘ -, ~ ‘
’ ~
7 S
2 ~

Figure 3: An illustration of Vertex Cut.

During graph computations, we often need to assemble an edge with the data associated on
both vertices. GraphX uses a 3-way relational join to bring together the source vertex data, edge
data, and target vertex data:

VertexDataTable v

JOIN VertexMap vm ON (v.id=vm.id)

RIGHT OUTER JOIN EdgeTable e
ON (e.pid=vm.pid AND (e.src=v.id OR e.dst=v.id))
WITH PARTITIONER edgeTable.partitioner ON pid

The joins to obtain triplets are fairly straightforward and use a partitioner. As the edge table
is often much larger than the vertex data table, the partitioner is used to ensure the join site would
be local to the edge table. This allows GraphX to shuffle only the vertex data and avoid moving
any of the edge data. To minimize communication, GraphX co-partitions the two tables so the
first join can be done locally. The resulting table from the 3-way join presents an edge-centric view
of the graph, with each tuple containing the edge data, source vertex data, and the target vertex
data. More information can be found in [5].

8.5 Computations on Matrices with Spark
8.5.1 Distributed Matrices

In Spark, matrices are typically stored broken up for storage in three different ways:
e By entries (CoordinateMatrix): stored as a list of (i, j, value) tuples

e By rows (RowMatrix): each row is stored separately (e.g. Pagerank)

lukesprangers
Highlight

lukesprangers
Highlight

lukesprangers
Highlight

e By blocks (BlockMatrix): by storing submatrices of a matrix as dense matrices, block matrices
can take advantage of low-level linear algebra library for operations like multiplications.

8.5.2 RowMatrix x LocalMatrix

When multiplying a RowMatrix with a small local matrix, we broadcast the entire small matrix
to each machine that contains different parts of the RowMatrix and perform multiplications on
each machine. Currently, Spark uses BLAS level 1 optimization, which optimizes for vector-vector
multiplications during the multiplication.

rows are distributed i lo ... Iy

8.5.3 CoordinateMatrix x CoordinateMatrix

CoordinateMatrix is used to represent sparse matrices, and is stored as a list of (row, column,
value) entries. To perform matrix multiplication of two Coordinate Matrix elements C' = AB, one
can summarize the procedure as follows:

Algorithm 3 CoordinateMatrix Multiplication
input: A: {(i,, Aij)|Ai; # 0}, B : {(i, J, Bij)| Bij # 0}
J + Join A,B on a.j and b.i fora € A, b€ B
M <« For each j € J, map it to (key, value) where key=(a.i,b.j) and value=a.val x b.val
C < Reduce M with “+”

Unfortunately, Spark does not have CoordinateMatrix multiplication implemented in the cur-
rent library. One possible implementation with Scala, when assuming the matrices are stored as
RDD [MatrixEntry(i, j, value)] is shown below

import org.apache.spark.mllib.linalg.distributed._

val n = 10 // one dimension of the matriz

val range = sc.parallelize({l to n * n})

// Generate two random sparse matrices of size nxn

val A = range.sample(false, 0.2) .map(i => MatrixEntry(i / n, i % n, 1))
val B = range.sample(false, 0.2) .map(i => MatrixEntry(i / n, i % n, 1))

// Perform multiplication

val C = A.map(e => (e.j, e)).join(B.map(e => (e.i, e)))
.map(p => ((p._2._1.i, p._2..2.j), p._2._1.value * p._2._2.value))
.reduceByKey(_ + _) .map(p => MatrixEntry(p._1._1, p._1._2, p._2))

lukesprangers
Highlight

lukesprangers
Highlight

Effectively, for each 1 < i < n, we first join all entries of matrix A on the i-th column with the
entries of matrix B on the ¢-th row, which would create a Cartesian product of two sets of entries
for each 7. The resulting set contains all possible pairs of entries that would’ve been multiplied
together during a normal matrix multiplication, and each pair of entries is keyed by their shared
dimension during the dot product operation. We then remap each element in this set by its position
in the result matrix and change its value to the product of the two entries and then reduce each
result position with the addition operator. This effectively simulates the dot product operation.
Finally, we remap the result to the desired format.

8.5.4 BlockMatrix x BlockMatrix

In some cases, we’d like to multiply two dense matrices for which the rows and columns may
themselves be too large to fit in memory on a single machine. By partitioning our matrices into
blocks that do fit on a single machine - encoding each one as a BlockMatrix - and performing
multiplication on their partitions, we can manage to perform matrix computation on the larger
matrices. Using BlockMatrix, we also have the ability to push down the smaller block matrix
multiplications to the CPU/GPU directly using Basic Linear Algebra Subprograms (BLAS) routines
- as mentioned above, Spark currently uses BLAS level 1 for matrix multiplication. To perform
block matrix multiplication, we partition both matrices appropriately so their blocks are equally
sized within each matrix, aligned in size across matrices, and so that a single block from each matrix
fits together on a single machine. Following partitioning, block multiplication proceeds similarly to
coordinate multiplication. Each matrix is flatmapped to produce a list of blocks for multiplication
- each block in the first matrix A is effectively copied as many times as the number of columns
in the second matrix B, and each block in B is effectively copied as many times as the number of
rows in A. Following the flatmap, a cogroup is used to send pairs of complementary blocks that will
need to be multiplied to an individual machine, where the multiplication is pushed down to the
CPU/GPU level using BLAS. Finally, results of the individual block multiplications corresponding
to each block entry in the resulting matrix are sent to the same machine with ReduceByKey and
summed up. A simplified version of the Spark code for block matrix multiplication is presented
below:

def multiply(other: BlockMatrix): BlockMatrix = {

// Get partitions
val resultPartitioner = GridPartitioner (numRowBlocks, other.numColBlocks,
math.max(blocks.partitions.length, other.blocks.partitions.length))

// Each block of A must be multiplied with the corresponding blocks
// in each column of B.
val flatA = blocks.flatMap {
case ((blockRowIndex, blockColIndex), block) =>
Iterator.tabulate(other.numColBlocks)

lukesprangers
Highlight

lukesprangers
Highlight

(j => ((blockRowIndex, j, blockColIndex), block))

// Each block of B must be multiplied with the corresponding blocks
// in each row of A.
val flatB = other.blocks.flatMap {
case ((blockRowIndex, blockColIndex), block) =>
Iterator.tabulate (numRowBlocks)
(i => ((i, blockColIndex, blockRowIndex), block))

// Cogroup and multiply block pairs
val newBlocks: RDD[MatrixBlock] = flatA.cogroup(flatB, resultPartitioner)
.flatMap { case ((blockRowIndex, blockColIndex, _), (a, b)) =>
if (a.nonEmpty && b.nonEmpty) {
val C = b.head match {
case dense: DenseMatrix => a.head.multiply(dense) // Uses BLAS 1
case sparse: SparseMatrix => a.head.multiply(sparse.toDense)
}
Iterator(((blockRowIndex, blockColIndex), C.toBreeze))
} else {
Iterator ()

}

// Sum up matrices for each block entry of C

.reduceByKey (resultPartitioner, (a, b) => a + b)
.mapValues (Matrices.fromBreeze)

References

[1] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[2] G. Malewicz and M. Austern and A. Bik and J. Dehnert and I. Horn and N. Leiser and
G. Czajkowski. Pregel: a System for Large-Scale Graph Processing. Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, 2010.

[3] J. Gonzalez and R. Xin and A. Dave and D. Crankshaw and M. Franklin and I. Stoica.
Graphz: Graph Processing in a Distributed Dataflow Framework. Proceedings of the 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2014.

[4] J. E. Gonzalez et al. Powergraph: Distributed graph-parallel computation on natural graphs..
OSDI'12, USENIX Association, pp. 1730.

[5] R. S. Xin et al. GraphX: A resilient distributed graph system on Spark. Proceedings of the
First International Workshop on Graph Data Management Experience and Systems (GRADES
2013), June 23, 2013, New York, New York, USA.

	8.1 Introduction
	8.2 How does Pregel work?
	8.3 Examples of Graph Algorithm Implementations using Pregel
	8.3.1 PageRank
	8.3.2 Connected Components

	8.4 GraphX
	8.4.1 Map-Reduce Triplets
	8.4.2 Triplets Example : Oldest Follower
	8.4.3 Other Operations
	8.4.4 Optimization

	8.5 Computations on Matrices with Spark
	8.5.1 Distributed Matrices
	8.5.2 RowMatrix LocalMatrix
	8.5.3 CoordinateMatrix CoordinateMatrix
	8.5.4 BlockMatrix BlockMatrix

